Welcome to the Predictive Medicine and Data Analytics Lab


The Predictive Medicine and Data Analytics Lab pursues research in data science. That means we are developing and applying high-dimensional machine learning and statistics methods that can be used for the analysis of data.

Examples are high-throughput data from genomic experiments. For instance, the data can come from gene expression, methylation, copy number variation, DNA-seq or RNA-seq experiments, e.g., generated from next-generation sequencing technologies. In this context, we are interested in basic biological questions relating to E.coli, S.cerevisiae and Human, but our particular focus is on the understanding of biomedical and clinical questions of complex disorders. We have experience working with data from various cancer types, e.g., breast cancer, colon cancer, bladder cancer, prostate cancer, kidney cancer and lymphoma and but we are also involved in studies of cystic fibrosis, asthma and diabetes. In addition, we are working on problems studying the pluripotency of Human stem cells and regulatory mechanisms of memory T-Cells in mice. All of these studies are conducted in close collaboration with biologists and clinicians.

Other types of data we are analyzing come from the stock market and social media. We are particularly interested in studying ways to forecast important system parameters, like stock values or consumer behavior, and utilize for this network-based approaches in combination with a statistical framework.

Quick Facts


In theory, there is no difference between theory and practice. But, in practice, there is.

Jan L. A. van de Snepscheut

Statistics is the grammar of science.

Karl Pearson

Data are becoming the new raw material of business.

Craig Mundie